The SRSF1 linker induces semi-conservative ESE binding by cooperating with the RRMs
نویسندگان
چکیده
SR proteins promote spliceosome formation by recognizing exonic splicing enhancers (ESEs) during pre-mRNA splicing. Each SR protein binds diverse ESEs using strategies that are yet to be elucidated. Here, we show that the RNA-binding domain (RBD) of SRSF1 optimally binds to decameric purine rich ESE sequences although locations of purines are not stringently specified. The presence of uracils either within or outside of the recognition site is detrimental for binding with SRSF1. The entire RBD, comprised of two RRMs and a glycine-rich linker, is essential for ESE binding. Mutation within each segment reduced or nearly abolished binding, suggesting that these segments mediate cooperative binding. The linker plays a decisive role in organizing ESE binding. The flanking basic regions of the linker appear to communicate with each other in bringing the two RRMs close together to form the complex with RNA. Our study thus suggests semi-conservative adaptable interaction between ESE and SRSF1, and such binding mode is not only essential for the recognition of plethora of physiological ESE sequences but may also be essential for the interaction with various factors during the spliceosome assembly.
منابع مشابه
The mechanisms of a mammalian splicing enhancer
Exonic splicing enhancer (ESE) sequences are bound by serine & arginine-rich (SR) proteins, which in turn enhance the recruitment of splicing factors. It was inferred from measurements of splicing around twenty years ago that Drosophila doublesex ESEs are bound stably by SR proteins, and that the bound proteins interact directly but with low probability with their targets. However, it has not b...
متن کاملIsolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition.
Serine/arginine (SR) proteins, one of the major families of alternative-splicing regulators in Eukarya, have two types of RNA-recognition motifs (RRMs): a canonical RRM and a pseudo-RRM. Although pseudo-RRMs are crucial for activity of SR proteins, their mode of action was unknown. By solving the structure of the human SRSF1 pseudo-RRM bound to RNA, we discovered a very unusual and sequence-spe...
متن کاملA Targeted Oligonucleotide Enhancer of SMN2 Exon 7 Splicing Forms Competing Quadruplex and Protein Complexes in Functional Conditions
The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Co...
متن کاملInteraction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly.
It has been widely accepted that the early spliceosome assembly begins with U1 small nuclear ribonucleoprotein (U1 snRNP) binding to the 5' splice site (5'SS), which is assisted by the Ser/Arg (SR)-rich proteins in mammalian cells. In this process, the RS domain of SR proteins is thought to directly interact with the RS motif of U1-70K, which is subject to regulation by RS domain phosphorylatio...
متن کاملhnRNP A1 and hnRNP F Modulate the Alternative Splicing of Exon 11 of the Insulin Receptor Gene
Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5' GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs ...
متن کامل